Oxide/(In)GaAs interfacial electronic characteristics by *in-situ* synchrotron radiation photoemission (SRPES)

陳婉馨 2018/10/04

Outline

- Why ultra-high vacuum (UHV)?
 - all UHV process from growth to measurement
- Motivation
 - ALD/MBE high-k/(In)GaAs interfaces with excellent CVs
- Experimental
 - sample growth in an integrated MBE/ALD system
 - *in-situ* synchrotron radiation photoemission (SRPES)
- Initial growth mechanism
 - ALD Y₂O₃/GaAs(001)-4x6
 - MBE Y₂O₃ or HfO₂/GaAs(001)-4x6
 - MBE Y₂O₃ or HfO₂/In_{0.53}Ga_{0.47}As(001)-4x2

What is vacuum?

(a)大氣

(b)真空

壓力<大氣壓力

圖 1.5 大氣與真空狀態下之分子數目

Definition of Vacuum

Atmosphere	1 atom = <mark>760</mark> torr	
Rough (low) vacuum	759 - 10 ⁻³ torr	
Medium vacuum	10 ⁻³ - 10 ⁻⁵ torr	
High vacuum (HV)	10 ⁻⁵ - 10 ⁻⁸ torr	
Ultra high vacuum (UHV)	< 10 ⁻⁸ torr	

壓力大小與殘留氣體負荷

壓力 (torr)	主要氣體負荷	
760	N ₂ (約為78%)	
10 ⁻³	H ₂ O (約為75%)	
10 ⁻⁶	H ₂ O, CO	
10 ⁻⁹	H ₂ , CO	
10 ⁻¹⁰	H ₂ , CO	
10 ⁻¹¹	H ₂	

Why ultra-high vacuum (UHV)?

氣體分子	單層膜形成時間 (sec)	壓力 (torr)
	1	10 ⁻⁶
	10	10 ⁻⁷
	100	10 ⁻⁸
sample	1000	10 ⁻⁹

壓力與單層膜形成時間之關係

The characterization of a solid surface on an atomic level implies unambiguously that the surface composition remains essentially unchanged over the duration of an experiment.

MBE-oxide/III-V interface

- ✓ Excellent CV characteristics
- ✓ High thermal stability to 900 °C
- \checkmark Low $D_{it} \sim (2-5) \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$ without peak in the mid-gap

Clear observation of the interfacial evolution for Y_2O_3 / HfO₂ deposited on (In)GaAs.

Advantage of synchrotron radiation photoemission

Band diagram

Band diagram

ALD-Y₂O₃ growth

Complete coverage of Y₂O₃ on GaAs(001)

 $D_A = surface \ atomic \ density \ of \ GaAs(001) = 6.27 \times 10^{14} atoms/cm^2$

 $D_V = Volume \ density \ of \ Y_2 O_3 = 1.43 \times 10^{22} \ atoms/cm^3$

Complete coverage $= \frac{D_A}{D_V} = \frac{6.27 \times 10^{14} \text{ atoms}/\text{cm}^2}{1.43 \times 10^{22} \text{ atoms}/\text{cm}^3} = 4.38 \text{ Å}$

SRPES results

Band diagram

We can obtain the band offset of 1 ML oxide film on semiconductor

Interfacial dipole potential energy

Interfacial dipole potential energy $\equiv IP_{clean} - IP_{adsorbate}$

Determination of ionization potential energy

Interfacial dipole potential energy () Dipole Potential Energy (eV) 0.6 (a) Cutoff +0.46 eV 0.4 hv = 120 eV0.2 bias = $-5 V_{.}$ + fully covered by Y₂O₃ 0.0 -0.2 Intensity (arb. units) 0X0X0tū Cycles -0.4 16 -0.6 16 2 5 6 12 14 10 No. of Reaction Cycles 5 (c) > 5 cycles Y(+ ~ 5 cycles 10 9 8 Kinetic Energy (eV) < 5 cycles

 $ightarrow \sim 95\%$ photoelectrons emission from within 3λ below the surface

$$I = I_0 e^{-\theta/\lambda}$$

$$I_0 = I_s \frac{1}{(1 - e^{-d_0/\lambda_0})}$$

$$I = (I_0 - \mathbf{x} * \mathbf{Is})e^{-\theta/\lambda}$$

Ideal curve

Total intensity of clean GaAs

Assume that x percentage of the surface atoms is removed

$$\frac{I_{As}}{I_{Ga}} = \frac{(I_{0,As} - \mathbf{x} * I_{s,As})e^{-\theta/\lambda_{As}}}{I_{0,Ga}e^{-\theta/\lambda_{Ga}}}$$

$$\frac{I_{0,As}}{I_{0,Ga}} = 0.53$$
$$\frac{I_{As}}{I_{Ga}} (23\text{\AA}) = 0.45 \text{\AA}$$

x~18%

GaAs(001)-4x6 *Theoretical calculation* $\rightarrow x \sim 18\%$

As(1): 17% As(2): 25% As(3): 8%

ALD $Y_2O_3/GaAs(001)-4x6$

Atomic Nature of the Growth Mechanism of Atomic Layer Deposited High- κ Y₂O₃ on GaAs(001)-4 × 6 Based on in Situ Synchrotron Radiation Photoelectron Spectroscopy

Chiu-Ping Cheng,^{*,†}[®] Wan-Sin Chen,[‡] Yi-Ting Cheng,[‡] Hsien-Wen Wan,[‡] Cheng-Yeh Yang,[§] Tun-Wen Pi,^{*,||} Jueinai Kwo,^{*,§} and Minghwei Hong^{*,‡}

[†]Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan, ROC

[‡]Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan, ROC [§]Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC ^{II}National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC

ABSTRACT: Y₂O₃ was in situ deposited on a freshly grown molecular beam epitaxy GaAs(001)-4 × 6 surface by atomic layer deposition (ALD). In situ synchrotron radiation photoemission was used to study the mechanism of the tris-(ethylcyclopentadienyl)yttrium [Y(CpEt)₃] and H₂O process. The exponential attenuation of Ga 3d photoelectrons confirmed the laminar growth of ALD-Y₂O₃. In the embryo stage of the first ALD half-cycle with only Y(CpEt)₃, the precursors reside on the faulted As atoms and undergo a charge transfer to the bonded As atoms. The subsequent ALD half-cycle of H₂O molecules removes the bonded As atoms, and the oxygen atoms bond with the underneath Ga atoms. The product of a line of Ga–O–Y bonds stabilizes the Y₂O₃ films on the GaAs substrate. The resulting coordinatively unsaturated Y–O pairs of Y₂O₃ open the next ALD series. The absence of Ga₂O₃, As₂O₃, and As₂O₅ states may play an important role in the attainment of low interfacial trap densities (D_{1t}) of <10¹² cm⁻² eV⁻¹ in our established reports.

Summary

- Our unique approach of combining MBE/ALD with SRPES in-situ is a must to characterize interfacial chemistry for high-k/(In)GaAs hetero-structures.
- High surface sensitivity and high energy resolution of SRPES enable an atomic-scale interface study down to atom-to-atom interaction.

Thank You